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The problem of bri t t le  strength has become very  important in connection with the extensive applica- 
tion of large vesse ls  under p r e s su re  in the atomic, missi le ,  and chemical  industries~ The f irs t  successes  
in the solution of this problem, based on l inear f rac tu re  mechanics ,  also showed the directions for the 
subsequent studies [1]. 

In the following we examine some aspects  of l inear and nonlinear f r ac tu re  mechanics  in application 
to thinwall vesse ls  made f rom high-s t rength materials~ We f i rs t  present  br ief ly the fundamentals of the 
engineering method for  bri t t le  strength analysis and indicate the p r ima ry  fac tors  which have not been studied. 
We then investigate the superfine s t ruc ture  of the crack end and develop a f rac ture  theory  relating to phe- 
nomena of smal le r  scale [2] (Section 1). In Section 2 we study the effect of loading rate  on f rac ture  tough- 
ness .  In Section 3 we evaluate bri t t le  strength for  the case of an elliptic defect with account for residual  
s t r e s ses .  In conclusion, we touch on the questions of rel iabil i ty (Section 4). 

The bri t t le  strength of a thinwall vesse l  is determined by the shape and the location of the most  haz -  
ardous crackl ike defect and the magnitude of the f rac tu re  toughness K t . ,  which charac te r i zes  the intensity 
of the elastic s t r e s se s  near  the c rack  edge at the moment when its unstable growth s tar ts  (the notat ionKic 
is usually used for  this quantity [1]). The metal lurgical  and technological causes for  the formation of c r ack -  
like defects are  discussed in detail in [3]. 

In accordance  with l inear f rac tu re  mechanics ,  the procedure  for  bri t t le  strength analysis consists  
in elast ic s t ress  analysis  for  the body with a cut of specified form; then the maximal  s t r e ss  intensity factor  
at the c rack  contour is equated to the quantity Kl*, which is assumed constant and known f rom a specially 
posed experiment.  Within the f ramework  of l inear analysis,  in addition to recording the initial crackl ike 
defect and measur ing K~,, p r imary  attention must be devoted to study of strength nonhomogeneity and 
anisotropy, and also the residual  s t r e s se s .  

Most cr i t ical  a re  the embrit t led thermal  influence zones near  weld seams.  Of all the mater ia l  m e -  
chanical charac te r i s t i c s  K1. is most  s t ruc ture  sensit ive.  Therefore ,  for  the same chemical  composition 
it depends, for  example, on the roll ing direction, heat t reatment ,  smelting, and so on. In the most  general  
case KI* is a function of the three Car tes ian  coordinates (nonhomogeneity) and the three pa rame te r s  which 
define the position of the c rack  edge at a given point (anisotropy). As a rule, the mater ia l  can be considered 
homogeneous and isotropic with respec t  to the elast ic proper t ies .  

However, effects which cannot be explained theoret ical ly  within the f ramework  of l inear f rac tu re  me -  
chanics are  still more  interest ing.  The most  important of these f rom the pract ical  viewpoint are  associated 
with subcri t ical  c rack  growth [4] and the large relat ive size of the plast ic zones at the tip of the crack [1, 5]. 

1.  S U P E R F I N E  S T R U C T U R E  O F  C R A C K  E N D  

We denote by L the charac te r i s t i c  l inear dimensions of the body (crack length or distance f rom crack  
tip to the edge of the body), d denotes the Character is t ic  l inear  dimension of the plastic region in the c r i -  
t ical state, and p is the charac te r i s t i c  l inear dimension of the crack tip in the limiting state (for example, 
the radius of curvature  or aper ture  of the crack).  Strictly speaking, l inear f rac ture  mechanics  is applicable 
provided L >> d (when the dimensionless pa ramete r  X =Kl* 2o's-2L-I is considerably smal le r  than one [6]; 
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h e r e  (r s = y i e l d  po in t ) .  When  th i s  cond i t i on  i s  v i o l a t e d ,  the  e l a s t i c  s i n g u l a r i t y  is  not  r e a l i z e d  and i t s  u s e  is  
m e a n i n g l e s s .  The  l a t t e r  c a s e  i s  m o r e  r e a l i s t i c  f o r  c o n s t r u c t i o n a l  m e t a l s  of low and m o d e r a t e  s t r e n g t h  
and the  v e s s e l  t h i c k n e s s e s  u s u a l l y  u s e d .  

Le t  us  e x a m i n e  the  r e g i o n  at  d i s t a n c e s  r f r o m  the  c r a c k  edge ,  s a t i s f y i n g  the  cond i t ions  

p ~ r ~--~ d, p ~ r ~ L (1.1) 

F o r  the  s t r u c t u r a l  m e t a l s ,  t he  quan t i t y  d i s  at  l e a s t  two to fou r  o r d e r s  l a r g e r  than  p; t h e r e f o r e ,  the  
a d m i s s i b i l i t y  of one cond i t ion  c a u s e s  no q u e s t i o n .  The  o t h e r  cond i t ion  is  v i o l a t e d  only fo r  c a v i t i e s .  The  
s o l u t i o n  of t h e  p r o b l e m  of t he  s t r e s s  and d e f o r m a t i o n  d i s t r i b u t i o n s  in t he  r e g i o n  (1.1) p r o v i d e s  the  a n s w e r  
to the  q u e s t i o n  of the  c r a c k - e n d  s u p e r f i n e  s t r u c t u r e .  

Wi th in  the  f r a m e w o r k  of s m a l l  d e f o r m a t i o n  t h e o r y  the  quan t i t y  p fo r  a cut  w i l l  obv ious ly  b e  equa l  
to z e r o .  

We s h a l l  c o n s i d e r  the  m a t e r i a l  to  be  s t r a i n - h a r d e n i n g  e l a s t o p l a s t i e .  We s h a l l  u s e  d e f o r m a t i o n t h e o r y ,  
a s s u m i n g  the  load ing  of e ach  e l e m e n t  n e a r l y  s i m p l e .  The  a d m i s s i b i l i t y  of t h i s  a s s u m p t i o n  i s  a l s o  c o n -  
f i r m e d  l a t e r  by  the  n a t u r e  of the  s o l u t i o n  o b t a i n e d .  

We w r i t e  t he  b a s i c  r e l a t i o n s  [7]: 

equilibrium equation 

cru, j = 0 (i, ] = t ,  2, 3) (1.2) 

r e l a t i o n s  b e t w e e n  d e f o r m a t i o n s  and d i s p l a c e m e n t s  

Hencky  equa t ions  

r = / (~), 

_ f ([) ~ 1 [. / (I) 
Etj  - -  ~ ~iJ - -  - : f "  ~iiSiJ 21 

I = ] /[z~ - -  1/3 zii6~j] [z~j - -  1/s ztibij] ' F = 2 ]f[eij - -  1/8 ei~6~j] [e~r - -  ~/~ ei~61~] 

( 1 . 3 )  

H e r e  (rij = s t r e s s e s ,  ~ ij = d e f o r m a t i o n s ,  u i = d i s p l a c e m e n t s ,  v = P o i s s o n  c oe f f i c i e n t ,  E = Young ' s  m o d u -  
lu s ,  and f ( I )  = g i v e n  s t r a i n - h a r d e n i n g  func t ion ,  s a t i s f y i n g  the  c o n d i t i o n f ' ( I )  > 0. M o r e o v e r ,  we s h a l l  a s -  
s u m e  tha t  t he  s t r a i n - h a r d e n i n g  func t ion  a p p r o a c h e s  a s y m p t o t i c a l l y  the  l i n e a r  f o r m  

/ ( I )  = I - I0 
No for I --~ o0 (1.4) 

H e r e  #0 and I 0 a r e  c o n s t a n t s  of the  m a t e r i a l .  It  can  b e  shown tha t  t he  c l o s e d  s y s t e m  of equa t ions  
(1.2) and (1.3) i s  e l l i p t i c  i f  the  cond i t ion  f ' ( I )  > 0 is  s a t i s f i e d .  

We e x a m i n e  a s m a l l  v i c i n i t y  of t he  a r b i t r a r y  p o i n t O  on the  c r a c k  con tou r ;  we t a k e  the  po in t  O as  the  
o r i g i n  of the  x i C a r t e s i a n  c o o r d i n a t e s ;  and we d i r e c t  x 3 a long the  c r a c k  con tou r  and x 2 a long the  n o r m a l  to  
t he  c r a c k  s u r f a c e ,  which  is  f r e e  of l o a d s .  Making  the  p a s s a g e  to  the  l i m i t  which  i s  equ iva l en t  to the  " m i -  
c r o s c o p e  p r i n c i p l e , "  we ob ta in  the  c a n o n i c a l  s i n g u l a r  p r o b l e m  fo r  (1.2), (1.3), g iven  o u t s i d e  the  cut x 2 = 0. 
x l < 0 .  In t h i s  c a s e  we m u s t  s e t  in (1.2), (1.3) 

0 = 0 ,  ] ( I ) _  i 
0z--~ 2! 21~o (1.5) 

The  s e c o n d  cond i t ion  i s  a c o n s e q u e n c e  of the  s t r e s s  s i n g u l a r i t y  as  x 2 + y 2 ~  0, and a l s o  the  p o s i t i v e  
d e f i n i t e n e s s  of t he  quan t i t y  I and the  r e l a t i o n  (1.4). I t  can  b e  shown tha t  a so lu t i on  of the  p o s e d  p r o b l e m  
which  is  bounded  (as x 2 + y  2--~ 0) in the  s t r e s s e s  and cont inuous  does  not  e x i s t  (in p a r t i c u l a r ,  t h i s  fo l lows  
f r o m  e n e r g y  c o n s i d e r a t i o n s  [2]). 

Thus ,  the  s u p e r f i n e  c r a c k - t i p  s t r u c t u r e  f o r  the  m a t e r i a l  in q u e s t i o n  with  a s y m p t o t i c  l i n e a r  s t r a i n -  
h a r d e n i n g  c o i n c i d e s  wi th  t h e  f ine  c r a c k - e n d  s t r u c t u r e  fo r  a l i n e a r l y - e l a s t i c  m a t e r i a l  hav ing  the  e l a s t i c  
c o n s t a n t s  

Eo = 2p, o (1 -[  %), 2Vo Z--2~o(J --2~,) 
= E -~- ~t0 (1 - -  2 ~ ) -  ( 1 . 6 )  
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Here kl, 
material 

Here E 0 is Young's modulus, and v 0 is the Poisson coefficient. We denote the corresponding stress 
intensity factors by ki, k2, k3o We recall that the fine crack-end structure is defined by the relation d <<r <<Lo 

Now we can use any of the numerous models suggested previously [8-14] to formulate the local frac- 
ture condition. All these models are equivalent [15] and lead to the same formulation of the criterion in 
terms of stress intensity factors, first given by Irwin [16]o We note that among the cited authors McClintoek 
and Wells proposed their criteria specifically for the superfine structure. 

We present the formulation of our additional condition on the contour of a growing normal-discon- 
tinuity crack 

kl = kl , ,  kl ---- lim (~2---~'1 a~2 ) (1.7) 
X l ~ 0  

is  a m a t e r i a l  constant ,  r e l a t e d  v e r y  s imply  with another  impor tan t  c h a r a c t e r i s t i c  of the 

kl .  2 = 2 E0 7/( t--v0 ~) (1.8) 

Here  y is  a quanti ty having the d imens ions  of spec i f ic  su r face  energy;  in the cons ide red  e l a s top l a s t i e  
model  of the medium,  it is  equal [15] to the work of the f ini te  p l a s t i c  de format ions  immed ia t e ly  near  the 
c r a c k  edge in a l a y e r  having a th ickness  on the o r d e r  of the rad ius  of cu rva tu r e  of the c r a c k  at i ts  t ip  (for 
the me ta l s  10-5-10 -2 cm).  Within the f r a m e w o r k  of the s m a l l  deformat ion  theory  adopted he re ,  this  quan-  
t i ty  is obviously not taken into account in the model .  

The case  of a sympto t i c  power - l aw s t r a i n - h a r d e n i n g  function can be examined s i m i l a r l y :  

] ( I )  = 2 a l  ~§ fo~ I - ~  ~ (1.9) 

Here  a and ~ a r e  constants  of the m a t e r i a l .  In this  case  it is  not diff icult  to show, using [2], that  the 
addi t ional  condit ion on the contour  of the g rowing  no r m a l - d i s c on t i nu i t y  c r a c k  will  be the following: 

kl = kl , ,  kl == l i m  [ (2nxl)  1/(x§ ~2~] (1 .10 )  
X1--*0 

Here  the constant  k l .  is connected with the quanti ty 7 by the r e l a t ion  

kl ~+2 = ~.17 / a (1.11) 

where  k 1 is a d imens ion l e s s  function of ~.  

On the b a s i s  of th is  d i scuss ion ,  the bas i c  p rob lem of nonl inear  f r a c t u r e  mechan ics  for  a s t r a i n -  
hardening bodydur ing  loading is  posed as follows: we a r e  r e q u i r e d  to solve  (1.2), (1.3) in the region  oc-  
cupied by the body, sa t i s fy ing  the boundary condit ions at the su r face  of the body (and c racks)  and the addi -  
t ional  condit ion (1.7) or  (1.10) at the contour  of the growing no r m a l - d i s c on t i nu i t y  c rack .  F o r  the loading 
in th is  case ,  it is  r e q u i r e d  that  in the superf ine  s t r u c t u r e  the inc remen t  Ak I be pos i t ive .  Addi t ional  s tudies  
a r e  r equ i r ed  in the case  of a complex loading path with unloading, s ince  the Hencky equations cannot be 
used and P r a n d t l - R e u s s  theory  must  be used; d i f f icul t ies  a r i s e  with de te rmin ing  the r e s i d u a l  s t r e s s e s  
and s t r a i n s .  

We see  that  the in t roduct ion of s t r a i n - h a r d e n i n g  makes  it poss ib l e  to avoid success fu l ly  the d i f f i -  
cul t ies  c h a r a c t e r i s t i c  of the idea l ly  e l a s top l a s t i c  body (see the a r t i c l e  by I rwin and McClintock in [1], and 
a lso  [2]), which amount to the fact  that  in the gene ra l  case  the s t r e s s  and s t r a i n  d i s t r ibu t ion  nea r  the edge 
of a cut in such a body cannot in p r inc ip le  be r e p r e s e n t e d  by a f ini te  number  of unde te rmined  cons tants .  
This  l eads  to a pos s ib l e  d ive rgence  between the d i f ferent  loca l  f r a c t u r e  c r i t e r i a  for  the hyperf ine  s t r u c -  
tu re .  Natura l ly ,  in the case  in which the body d imens ions  a r e  suff ic ient ly  l a r g e  so that  the qua s i b r i t t l e  
a sympto t i c  behav io r  is  r eached ,  a l l  these  c r i t e r i a  a r e  equivalent  for  the idea l ly  e l a s top l a s t i c  model  as 
wel l .  

Let  us make some e s t i m a t e s .  Here  we shal l  suppose for  s imp l i c i t y  that  the  s t r a i n  hardening  func-  
t ion in the en t i r e  reg ion  I > %.2/~3 is approx imated  by the power - l aw re l a t ion  (1.9). We should emphas ize  
that  the r e l a t ion  F = f ( I )  must  be de t e rmined  on suff ic ient ly  thin smooth spec imens .  

At a d i s tance  f rom the c r a c k  point of the o r d e r  of i ts  opening p, the s t r e s s  a~2 is on the o r d e r  of the 
engineer ing  u l t imate  s t rength  of the thin smooth spec imen .  Hence, with the aid of (1.10) we obtain 

X ~ 2  ' X + 2  

kl.  ~--~ 2~9~b (1.12) 
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At a distance from the crack point of the order of the plastic region dimension d in the critical state 
(the quasibrittle state is assumed to have been reached), the stress ~22 is on the order of the fro.2 yield 
point. Hence, with the aid of (1.10) we find approximately 

kl, "~2 ~ 2~d%.ff .2 (1.13) 

Using the known re l a t ions  [1, 6] 

K1, 2 ~ 2~(r0.22 d, 

and (1.11)-(1.13), we find s o m e  in t e r e s t i ng  r e l a t ions :  

ki,  • : ~,~50.~K1, ~, P : )~3 - -  

KI. ~ -- 2E7. / (I -- ~) (1.14) 

2~%~ , ~ - , ~ \  % ] (1.15) 

where 7. is the total specific dissipation work (effective surface energy per unit area), and 42, 43, 44 are 
numbers of order one. 

It also follows from these estimates that the quantities y and 7" are of the same order, i.e., in the 
process of quasibrittle crack development the irreversible specific work on finite deformations imme- 
diately n e a r  the c r a c k  edge (at d i s t ances  f r o m  the edge l e s s  than a quant i ty  of o r d e r  p) amounts  to a s ign i -  
f icant  por t ion  of the  to ta l  spec i f i c  d i s s ipa t ion  e n e r g y  in c o n t r a s t  with the c a s e  of the plane s t r e s s  s ta te  of 
v e r y  thin p la tes  [17]. This  explains  the e x p e r i m e n t a l  obse rva t ion  that  subc r i t i c a l  c r a c k  growth  fo r  plane 
s t r a in  is f a r  l e s s  than f o r  v e r y  thin p la tes .  On the  bas i s  of f r a c t o g r a p h i c  s tudies  of fa t igue  c r a c k  s u r -  
f a c e s  (see, f o r  example ,  the a r t i c l e  of B e e c h a m  and Pe l l  in [1]), we can conclude that  subc r i t i c a l  c r a c k  
growth  under  plane s t r a in  condi t ions  is of the  o r d e r  of magni tude  of the opening p, while in v e r y  t h inp l a t e s  
this  g rowth  m a y  be  m e a s u r e d  in c e n t i m e t e r s  [18]. 

The app roach  p r o p o s e d  m a y  be used,  in p a r t i c u l a r ,  to  m e a s u r e  f r a c t u r e  toughness  K1, on s m a l l  
s p e c i m e n s  with a c r a c k  by m e a s u r i n g  k i , .  To do this  we m u s t  have the t h e o r e t i c a l  so lut ions  fo r  the c o r -  
r e spond ing  g e o m e t r i c  conf igura t ion  and f o r  a s emi - in f in i t e  cut in an infinite body;  the l a t t e r  solut ion yie lds  
the exact  dependence  be tween K1, and k l , .  The use  of digi ta l  c o m p u t e r s  m a k e s  it poss ib l e  to hope that  
t he se  p r o b l e m s  wil l  be  solved in the  n e a r  fu tu re .  

We shal l  examine  a c o n c r e t e  example .  A s s u m e  a c r a c k  of length l p e r p e n d i c u l a r  to the s u r f a c e  runs  
to the  edge of a ha l f -p l ane  (plane s t ra in ) .  At infinity the body is subjec ted  to the un i fo rm tens i l e  s t r e s s  p; 
the  su r f ace  of the  body and c r a c k  a r e  a s s u m e d  f r e e  of loads .  We take the above p o w e r - l a w  a p p r o x i m a -  
t ion (1.9) fo r  I>-cr0.Jff~. Using d imens iona l  ana lys i s  [10], it is not diff icult  to find the magni tude  of the 
f r a c t u r i n g  s t r e s s  p ,  in the l imi t ing  c a s e s :  

p ,  = )~K1, 1-1/2 for ~ ~ i (1.16) 

P,  =)~6(• k l ,  1-1/(• for 7 ~  l 

(X = K1, 2 l-1%.2 -2) (1.17) 

H e r e  4 5 is a number ,  k6(%) is a d i m e n s i o n l e s s  funct ion of u;  in the case  of a s p e c i m e n  of f ini te  width 
h they a lso  depend on the  ra t io  / /h .  The second  f o r m u l a  is obvious ly  val id f o r  1 >>p; when the c r a c k  length 
b e c o m e s  c o m p a r a b l e  with p, the  c r a c k  g rows  like a cav i ty  and p ,  = % .  

2. EFFECT OF LOADING RATE ON FRACTURE TOUGHNESS 

The fracture toughness index KI. also varies as a function of the loading rate (by approximately 
I~5-2 times with a five-order change of the loading rate, which corresponds to transition from static to 
impact loading; see, for example, the article of Irwin and Krafft [I]). Two basic types of physical me- 
chanisms for such a dependence can be suggested (we neglect slow initial subcritical crack growth). 

a) Local Ageing [20]. Let us assume that the vicinity of the crack point is subjected to loading of 

magnitude Ki, less than critical. In the region near the crack point, under the action of the stresses the 
phase changes, recrystallization processes, and so on, and also the diffusion processes (e.g., adsorption 
of hydrogenfrom the ambient medium), take place faster; and the hydrogen diffusion rate in the crack, in 
view of the high volatility of hydrogen, can be considered infinitely large in comparison with the diffusion 
in the solid body. All such locally proceeding processes, thermally activated, can be described phenom- 
enologically as a modification, "ageing, ~ of the material at the crack tip in the course of time. The ma- 
terials having such a physical mechanism include certain titanium alloys [1]. 
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In this case,  using the conventional fluctuation arguments and the damage summation law, it is not 
difficult to obtain the following relation for the t ime ~- at the end of which the crack transit ions into the 
unstable state: 

I exp " q K l ( t ) d t : v o e x p  U (2.1) 
, kT  kT 

o 

H e r e  T is  t e m p e r a t u r e ,  k i s  t he  B o l t z m a n n  cons t an t ,  and r 0, ~?, and U a r e  c o n s t a n t s  of t he  m a t e r i a l .  

In p a r t i c u l a r ,  f o r  c o n s t a n t  r a t e  K l" = c o n s t ,  when K 1 = Kl"t , f r o m  (2.1) we obta in  the  d e p e n d e n c e  of 
the  f r a c t u r e  t o u g h n e s s  Kl* on the  load ing  r a t e  Kl ' :  

K - - k T  l n ( i +  %~1 K.exp k ~ )  (2.2) 1,-L- ~- -Z2- 1 

Since  the  s e c o n d  t e r m  in the  p a r e n t h e s e s  is  much  l a r g e r  than  1, we obta in  the  fo l lowing  f o r m u l a :  

r ~_g_+ln ~1~ (K.=  kT~ KI* = \ kT  KIo" ] "~o~1 ] (2.3) 

which  d e s c r i b e s  qu i t e  we l l  [1] the  e x p e r i m e n t a l  r e s u l t s  f o r  the  T i - 6 A 1 - 4 V .  

b) Y ie ld  Lag .  (Cf. [21] and [22].) Let  us  a s s u m e  tha t  the  f ine  s t r u c t u r e  of the  c r a c k  po in t  i s  s u b -  
j e c t e d  to load ing  with  the  c o n s t a n t  r a t e  K i" = c o n s t ,  so tha t  K l" =Ki t .  A s  a r e s u l t  of the  p l a s t i c  d e f o r m a -  
t ion  t i m e  lag ,  t he  l a r g e r  the  load ing  r a t e  Kl" , the  s m a l l e r  t he  p l a s t i c  r e g i o n  n e a r  the  c r a c k  poin t  a t  any 
f ixed  m o m e n t  of t i m e .  

In the  l o w - c a r b o n  s t e e l s ,  which  have  the y i e l d  lag  p r o p e r t y ,  t h e r e  is  s o m e  m i n i m a l  va lue  of K t ,  f o r  
a g iven  t e m p e r a t u r e ,  r e a c h e d  on a s t a t i o n a r y  c r a c k  d u r i n g  d y n a m i c  t e s t i n g  o r  a runn ing  c r a c k  at the  m o -  
m e n t  of s topp ing  [1]. The  d e s c e n d i n g  s e g m e n t  on the  K l .  = f ( K l ' )  c u r v e  is  qu i t e  we l l  d e s c r i b e d  by  (2.3), if  
t h e r e i n  we t a k e  the  m i n u s  s ign  on the  l o g a r i t h m .  T h e r e  i s  not  a s  ye t  a s a t i s f a c t o r y  t h e o r y  f o r  t h i s  p h e -  
nomenon .  The  i n d i c a t e d  d e p e n d e n c e  on the  load ing  r a t e  e x p l a i n s  the  a b r u p t  c r a c k  d e v e l o p m e n t  o b s e r v e d  
in c e r t a i n  m e t a l s .  

3. BRITTLE STRENGTH COMPUTATION FORMULAS 

ACCOUNT OF RESIDUAL STRESSES 

In addition to other factors, the brittle strength of vessels depends significantly on the residual 
stresses, which develop primarily during manufacturing operations. Particularly hazardous are the in- 
ternal stresses in the welding heat affected zone, which have a local nature and reach considerable mag- 
nitudeo Account for these stresses within the framework of linear fracture mechanics obviously leads to 
mathematical problems of elasticity theory without initial stresses but with an external load distributed 
along the surface of the crack. 

A s s u m e  tha t  a p l a n e  p a r t - t h r o u g h  c r a c k  which  in p l a n e  v~ew is  a s e m i e l l i p s e  wi th  axes  a and b (F ig .  
1) r uns  to  t he  edge  of the  v e s s e l  wa l l .  We  s h a l l  c o n s i d e r  tha t  the  s t r u c t u r e  has  f a i l e d  if  a s  a r e s u l t  of 
g rowth  the  c r a c k  b e c o m e s  a t h r o u g h  c r a c k  (even if t h i s  does  not  l e ad  to  f a i l u r e  of t he  e n t i r e  v e s s e l ) .  F o r  
t h i s  p r o b l e m  in the  u s u a l  a p p r o x i m a t i o n  of s h e l l  t h e o r y  (h<< R, w h e r e  h is  the  wa l l  t h i c k n e s s  and R is  t he  
s m a l l e s t  r a d i u s  of c u r v a t u r e  of the  she l l ) ,  the  v e s s e l  wa l l  m a y  be  c o n s i d e r e d  an in f in i t e  s t r i p  0-< y-< h, 
-oo  < (x, z) < ~o, whose  b o u n d a r i e s  y =0 and y =h a r e  f r e e  of l oads ;  at in f in i ty  t h e r e  act  t e n s i l e  s t r e s s e s ,  
bend ing  and t w i s t i n g  moments~  d e t e r m i n e d  f r o m  the  so lu t ion  of the  p r o b l e m  as  a whole  f o r  the  s u b j e c t  
s h e l l  wi thout  a c r a c k .  They  a r e  equa l  to  t he  c o r r e s p o n d i n g  q u a n t i t i e s  f r o m  the a n a l y s i s  of the  s h e l l  at tha t  
spo t  w h e r e  the  c r a c k  i s  l o c a t e d  and depend  on the g e o m e t r i c  p a r a m e t e r s  of the  she l l ,  i n t e r n a l  p r e s s u r e ,  
and o t h e r  e x t e r n a l  load ing  p o s s i b l e  p a r a m e t e r s .  

We s h a l l  c o n s i d e r  the  p r o b l e m  to be  l o c a l l y  s y m m e t r i c  r e l a t i v e  to the  xy  p l a n e  (F ig .  1); in t h i s  c a s e  
only  the  s t r e s s  ~z = ~0 and the  bend ing  m o m e n t  M x =M 0 wi l l  i n f luence  the  c r a c k  g rowth .  We a s s u m e  tha t  
in the  a b s e n c e  of the  c r a c k  t h e r e  e x i s t e d  i n i t i a l  s t r e s s e s  at  i t s  l oca t ion ,  which  we a p p r o x i m a t e  by  a l i n e a r  
r e l a t i o n  

(~z : c o y - ~  do, ~z~ : % y  ~ 0  (3.1) 
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6g 

F i g .  1 

It  i s  not  d i f f i cu l t  to show tha t  in t h i s  c a s e  the  unknown s t r e s s  i n t e n s i t y  
f a c t o r  K i i s  d e t e r m i n e d  f r o m  the  so lu t i on  of the  ana logous  p r o b l e m  fo r  a s t r i p  
wi th  c r a c k ,  f r e e  of e x t e r n a l  l o a d s ,  wi th  the  cond i t ions  at  in f in i ty  

(~ = (~0 - -  do, M ~  = M 0  - -  1/1~ co h 3 ( 3 . 2 )  

F r o m  c o n s i d e r a t i o n s  of d i m e n s i o n a l  a n a l y s i s  and p r o b l e m  l i n e a r i t y ,  t h i s  
f a c t o r  wi l l  be  e x p r e s s e d  by  the  f o r m u l a  

Kt = (~0  --d0)~ f - ~ ( 0 ,  b / a ,  b / h )  

+ (Mo --I112 coh~)b-8/2~ (0, b / a ,  b / h )  (3.3) 

w h e r e  ~ and ~ a r e  d i m e n s i o n l e s s  func t ions  of t h e i r  v a r i a b l e s .  

In o r d e r  to ob ta in  a s u f f i c i e n t l y  s i m p l e  e n g i n e e r i n g  so lu t ion  of th i s  p r o b -  
l e m ,  we s h a l l  u s e  t he  a v a i l a b l e  e x a c t  s o l u t i o n s .  

We s h a l l  u t i l i z e  the  a p p r o x i m a t e  e s t i m a t e  t e c h n i q u e s  whose  e f f e c t i v e n e s s  
was  d e m o n s t r a t e d  in s t u d i e s  of I r w i n  [23] and P a r i s  and Sih [1]. 

0 ~ b / h ~ 0 . 5  (3.4) 

We s h a l l  e x a m i n e  the  r a n g e  

O < ~ b / a ~ t ,  

which is  of g r e a t e s t  p r a c t i c a l  i n t e r e s t .  

Le t  us  f i r s t  e x a m i n e  s o m e  p a r t i c u l a r  c a s e s  which  a r e  a l so  of i ndependen t  i n t e r e s t .  

C r a c k  of E l l i p t i c  P l a n f o r m  in In f in i t e  Body.. Let  an in f in i t e  body with  c r a c k  o c c u p y i n g  the  r e g i o n  
z =0,  x~a2+y2 /b  2 -< 1 b e  s u b j e c t e d  to  u n i f o r m  t e n s i o n  in t he  d i r e c t i o n  of the  z ax i s  b y t h e  s t r e s s  ~ at  i n -  
f in i ty .  The  s t r e s s  i n t e n s i t y  f a c t o r  K l i s  e x p r e s s e d  by  the  fo l lowing  a p p r o x i m a t e  f o r m u l a :  

K 1 = a ]/ '~-b(t - - 0 .36  b / a )  [cos 20 + (b ~ / a  2) sin~0]'/ ' , ( 0 ~  b / a ~  I ,  x = a  sin0) (3.5) 

co inc id ing  to  wi th in  1% with  the  exac t  P a n a s y u k - I r w i n  f o r m u l a  [1], which  con ta in s  an e l l i p t i c  i n t e g r a l .  

On the b a s i s  of (3.5) the  m a x i m u m  of K l o c c u r s  f o r  0 = 0 at  the  ends  of the  e l l i p s e  s h o r t  a x i s .  In th i s  
c a s e ,  if 0.78 <bin  < 1 t h e  i n i t i a t i o n  of r a p i d  u n s t a b l e  g r o w t h  of t he  e n t i r e  c r a c k  is  p r e c e d e d  b y  slow s t a b l e  
i n i t i a l  g rowth  of the  b r i t t l e  c r a c k ,  in the  p r o c e s s  of which the  c r a c k  shape  a p p r o a c h e s  a c i r c l e  wi th  d i -  
a m e t e r  equa l  to  t he  l eng th  2a of t he  l a r g e  ax i s  of t he  i n i t i a l  e l l i p s e  (if we a s s u m e  tha t  the  c r a c k  r e t a i n s  
in i t s  g rowth  an e l l i p t i c  f o r m ) .  The  c i r c u l a r  c r a c k  f o r m x 2 + y  2-< a 2 c o r r e s p o n d s  to  the  m o m e n t  of t r a n s i -  
t i on  into the  u n s t a b l e  s t a t e .  In th i s  c a s e  the  l i m i t  load  ~ * ,  c o r r e s p o n d i n g  to f r a c t u r e  of the  body  as  a 
whole ,  i s  found f r o m  (3.5) f o r  a =b  and f r o m  the  cond i t ion  K 1 = K1. 

V-~KI.a -'/~ ( 0 . 7 8 < b / a < l )  (3.6) 

F o r m u l a s  (3.6) and (3.5) can  be  r e c o m m e n d e d  as  d e s i g n  f o r m u l a s  f o r  v e s s e l s  u n d e r  p r e s s u r e  if the  
s h o r t e s t  d i s t a n c e  of t he  con tou r  po in t s  of the  m o s t  h a z a r d o u s  c r a c k - l i k e  d e f e c t  f r o m  the  v e s s e l  wa l l  o r  
n e i g h b o r i n g  de fec t  i s  no l e s s  than  3a [1]. 

We  note  tha t  the  f o r m u l a  p r o p o s e d  b y  I r w i n  [23] a p p l i e s  only  to  t he  c a s e  of u n s t a b l e  g rowth  of an 
e l l i p t i c  c r a c k .  

In the  c a s e  in which  a n o r m a l  load  fo l lowing  the  l i n e a r  law 

~z = - -  t2 My h -~ (3.7) 

i s  a p p l i e d  to t he  e d g e s  of a c i r c u l a r  c r a c k  z =0,  x 2 + y 2 ~ a 2  in an in f in i t e  body ,  the  s t r e s s  i n t e n s i t y  f a c t o r  KI 
wi l l  b e  [24] 

K 1 = 16 ~-'/~ Ma% h -3 cos 0 (3.8) 

S u p e r p o s i t i o n  of (3.6) and (3.8) m a k e s  i t  p o s s i b l e  to e s t i m a t e  the  f r a c t u r i n g  l oad  fo r  b e n d i n g - t e n s i o n  
of a f i a t  p l a t e  in t h o s e  c a s e s  in which  K 1 > 0 e v e r y w h e r e  on the  c on tou r  of a c i r c u l a r  c r a c k  l o c a t e d  at  a 
d i s t a n c e  no l e s s  than  3a f r o m  the  edges  of the  s t r i p .  In t h i s  c a s e  c1"ack g rowth  w i l l  p r e c e d e  the  m o m e n t  
of t r a n s i t i o n  into t he  u n s t a b l e  s t a t e .  
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This stable initial growth of the bri t t le  crack in a uniform s t ress  field will be the charac te r i s t ic  
feature of th ree-d imens ional  c racks .  

Semici rcular  Surface Crack  in a Strip. Let a body occupying the region 0 <y <h, - ~ < (x, z) < :r and 
having a c rack  z =0, x2+y 2 -<a 2 be subjected at infinity t o t h e  uniform tensile s t r e ss  ~z =~ and the bending 
moment M x =M. The s t r e s s  intensity fac tor  K�94 for  bending is expressed by the approximate formula  

a / 20 \ ? / 0  2 

(O~ a / h ~ 0 . 5 ,  sin O = x /  a) 

which coincides to within about 3% with the numerical  solution of [25]. 

Using the solution of [25], to within the same accuracy  we can find the approximate expression for 
the s t ress  intensity fac tor  for tension 

2 Vail + 0.2/20 ~1 I{1 = - ~ -  ~ \-~-1 j (0 ~ a / h ~ 0.2, sin 0 = x / a) (3.10) 

By analogy with the preceding discussion,  the crack obviously will initially grow stably from the 
edges adjacent to the f ree  boundary, taking an elliptic shape, until the s t r e ss  intensity becomes constant 
along the entire contour of the crack.  Then the unstable dynamic f rac tu re  process  begins. On the basis  
of experimental  data [25], the ellipse axis rat io a/b at the moment of tension f rac ture  is about 1.5. 

Rect i l inear  Surface Crack in a Strip. Let a body occupying the region 0 <y<h ,  -~r < (x, z)< ~ and hav-  
ing a crack z =0, 0 < y-<b be subjected at infinity to uniform tension by the s tess  ~z =~ and the bending 
moment M X =M. 

The corresponding s t ress  intensity factors  will be 

K1 : ~ ] f ~  i.ii -[- 5 (b / h)~ 
l - - b / h  ( 0 <  I-~-~0'5) (3.11) 

{ l . t 5 - - t5 (b /h )  ~ for O < b / h ~ O . l  (3.12) 
= 1 for b/h>O. t  

Formula  (3.11) is an approximation to within 1% of the numer ica l  resuRs of Gross  and Bowie (pre- 
sented in [1]). Express ion  (3.12) is the modified Romaine formula;  comparing it with BuecknerVs numer i -  
cal solution, its maximal  e r r o r  can be found to about 4%. We note that all these resul ts  were confirmed 
experimental ly  using I rwin ' s  method (measuring the displacement or  compliance).  

These schemes and the formulas  (3.11), (3.12) are  the most  convenient in prac t ice  for  measur ing  
the KI.  of metals .  

Let us re turn  to the general  case of an elliptical edge crack  in a str ip (Fig. 1). Using the formulas  
obtained above as different limiting es t imates ,  we can find the following approximate expressions for the 
s t r e ss  intensity factor:  

tension 
1.12--0.4Sb / a-{-O.13 (20 / ~)~ (b / a) (3b / a - -  2 - - b  / h) 

K I = ~ | / ~  • l--(b/h)(t--O.75~/a) 

( O ~ b / a ~ t ,  O ~ b / h ~ 0 . 4 )  
(3.13) 

bending 

�9 \ h )  | a , ~ ]  \ h  a ]  

- , §  + ~ 4 )  LI - t 
( O ~ b / a ~ i ,  O ~ b / h ~ 0 . 4 )  (3.14) 
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Formulas  (3.13), (3.14) include as l imiting relat ions (3.9)-(3.12); on the basis  of physical  arguments  
and the indicated precis ion of the limit formulas ,  we can guarantee that the maximal  e r r o r  will not exceed 
10%. This  accuracy  should be considered sa t i s fac tory  for  engineering purposes .  Superposition makes it 
possible to examine combined bending-tension with the aid of (3.13), (3.14). 

The result ing expressions (3.13) and (3.14) make it possible to study three-d imens ional  edge crack  
development and to make es t imates  of the f r ac tu re  loads. By analogy with the preceding discussion,  the 
initial development of the c rack  will general ly  be stable, which makes analysis  of the l imit states difficult. 
We make a simplifying assumption: the c rack  remains  elliptical in the p rocess  of its stable development. 
This makes it possible to use (3.13) and (3.14) in the analysis of subcr i t ical  c rack  growth. According to 
(3.13) and (3.14), two cases  a re  possible.  

a) The initial c rack  has dimensions such that the coefficient of 0 2 is positive. Then the c rack  be-  
gins to develop along the edge adjacent to the surface  of the s tr ip and the c rack  depth b does not change 
(b/a decreases ) .  Stable c rack  growth will continue until the s t r e s s  intensity equalizes along the entire 
c rack  contour.  It is obvious that the limiting state preceding t ransi t ion into the dynamic regime is reached 
at the moment when the coefficient of 0 2 vanishes.  

b) The initial c rack  has dimensions such that the coefficient of 0 2 is negative. Then the crack be-  
gins to develop depthward, while the surface length 2a of the c rack  does not change (b/a increases) .  Once 
again, as a resul t  of this c rack  shape change there  is a redistr ibut ion of the s t r e ss  intensity along the c rack  
contour leading to equalization. The limit state will be reached at the moment the coefficient of 0 2vanishes, 
if we assume that the maximal  value of b/h is less than 0.4. The lat ter  case  (b/h > 0.4) is close to the pos-  
sibility of the existence of stable through cracks  and is quite rea l i s t ic  for  thinwall a i rc ra f t  s t ruc tu res .  
However,  it is not examined here .  

We note that the fact of stable initial growth of par t - though cracks  has been known to the exper i -  
mental is ts  for  a compara t ive ly  long t ime.  However, an adequately c lear  explanation has not been avail-  
able (see, for  example, [23]). 

We shall present  the final formulas  obtained on the basis  of (3.13) and (3.14), which define the c r i -  
t ical  c rack  dimensions and also the limit loads in the case of stable initial growth: 

tension 

a 3 ~- "Jr 6. = (0.68 -t- 0.04) K1. b . . . .  ' -- -~ --U ~ 0'4 (3.15) 

bending 

_ K1h~ (b ) ab 32 i5631, ' M. = 0.t2 ~ /  T ~ 0 . 4  

/t 4- 0./ for O~b/h~O.l  
/=  [i.-t---t.2b/h++_O.t for O.t<b/h<O,.4 

(3.16) 

tension-bending 

b 2 b(N--5) N -~ 0'i7ahZ 
a 5 "q 3 h ( N ~ l ) '  M(l--O.5b/h,) ~--.J_.i-- %~ (3.17) 

If a = ( 3 - - t O )  cb,~wfllbe b / a ~ . ~ / 3 a n d  

M V'b a t + o.5 + )  + 8.3 

l i-b/h+o.o5 fo~ 0<b/h<0.2 
g = [0.8 .~0.05- for 0.2<b/h<0.4 

Here o" m is the maximal  s t r e s s  f rom the bending moment  (in the ex t reme fiber); the equality sign 
in (3.15) corresponds  to the f rac tur ing  load combination. The functions f and g approximate the more  
complex express ions  obtained f rom (3.13) and (3.14). In the unstable c rack  growth case (3.13), (3.14) must  
be used f rom the ve ry  beginning. 

Formulas  (3.13)-(3.17) have acceptable accuracy  for  engineering calculations and encompass  p r a c -  
t ical ly all possible cases  of br i t t le  f r ac tu re  of thinwall vesse l s  under p res su re ;  substitution into these 
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formulas  of the values of ffz in place of ~ and M x in place of M in accordance with (3.2) makes it possible 
to determine the external  load pa rame te r s  at the moment  of f rac tu re  as a function of  shell geometry ,  r e -  
sidual s t r e s ses ,  and the bri t t le  f r ac tu re  pa r ame te r s  (dimensions of initial defect and K1.).  If the working 
loads are  specified, (3.15)-(3.17) serve  as c r i t e r i a  for tolerable  defect dimensions,  magnitude of Ki .  of 
the metal ,  shell geometry ,  and residual  s t r e s ses .  

Plast ici ty Correc t ion .  The exact calculation, which accounts for  plast ic effects and is based on ex- 
amination of the hyperfine s t ruc ture  (see Section 1), involves tedious computational work and has not yet 
been car r ied  out. Therefore ,  it is advisable in the initial stage to use the empir ical  plast ici ty correc t ions  
suggested by Irwin [23]. In application to the present  problem, the correc t ion  amounts to increasing the 
dimension b by the magnitude Ab 

a b =  p ( K~*'~ ~ \ ~-~--.~ / (3.18) 

where p is a number selected to provide agreement  with experiment (recommended values are: p =1 for  
through cracks  in thin plates,  p =73 for plane s train [1]). 

It is assumed [1] that the cor rec t ion  shifts the limit of acceptabili ty of l inear f rac tu re  mechanics  up 
to an average s t r ess  in the net c ross  section on the order  of ~a.2. 

4. RELIABILITY OF STRUCTURE WITH CRACK 

Comparative evaluation of structural operational reliability becomes of paramount interest for the 
high-strength materials with increasing danger of sudden brittle fracture. Two approaches are possible. 

a) If the dimension b of the most hazardous initial crack-like defect can be detected by nondestruc- 
tive testing with 100% probability, then the number ~( serves as the reliability estimate [6] (for the same 
limit loads): 

X= K1.---~-2 (b~0.4h) (4.1) 
%2.eb 

The l a rge r  the number )t, the more  ductile is the f rac ture ;  the smal le r  the number  )~, the c lose r  the 
f rac tu re  is to the ideal bri t t le  type. 

b) Assume the quantities K l . ,  q0.2, and in par t icu lar  b, be known only with some probability.  Then, 
for  a valid selection of the safety margin  we must  f i rs t  of all specify the s t ruc ture  operational confidence 
coefficient (say, 90, 95, or  99% - depending on the function per formed by the component); then (3.13)-(3.18) 
are  used to calculate the safety margin  required to ensure  the desired probability.  Then comparison of 
the two s t ruc tures  (with the same safety margin  and limit load) is made by comparing the distribution func- 
tions of the number  • 

In prac t ice  it may  be more  convenient to use the design safety margin  and (3.13)-(3.18) to find the 
cr i t ical  defect dimensions,  and then on the basis  of the available f r ac tu re  s tat is t ics ,  or  f rom analysis of 
the metal lurgical  and manufacturing p rocesses  during which defects are  formed,  evaluate the probabili ty 
of supercr i t ica l  c racks  in the s t ruc ture .  
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